exocyclic double bond, generally increase toward the extremities of the molecule (Table III and Figure 1). The largest thermal amplitudes are approximately in plane for phenyl B , but $\mathrm{C}(18)$ and $\mathrm{C}(19)$ display their largest vibrational components perpendicular to the plane of phenyl A.

The molecular packing can be seen in a threedimensional view down the z axis in Figure 2. No unusually short intermolecular contacts are present. The only intermolecular approaches smaller than $3.75 \AA$ are $\mathrm{C}(3)(x, y, z) \cdots \mathrm{C}(13)(1 / 2-x, \bar{y},-1 / 2+z)(3.649 \pm$ $0.005 \AA), \mathrm{C}(6)(x, y, z) \cdots \mathrm{C}(16)(x,-1 / 2-y, 1 / 2+z)$ $(3.729 \pm 0.005 \AA)$, and $\mathrm{C}(12)(x, y, z) \cdots \mathrm{C}(19)(x, y$, $1+z)(3.708 \pm 0.005 \AA)$ along the x, y, and z directions, respectively. Molecules related by centers of symmetry pack with their phenyl B rings parallel; the distance 3.86
\AA between such planes is about $0.46 \AA$ longer than the closest packing between phenyls. ${ }^{36}$

Acknowledgment. We are grateful to F. Johnson for suggesting the problem and supplying the crystals and to F. P. Boer for helpful discussions.

Supplementary Material Available. A listing of observed and calculated structure factors will appear following these pages in the microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only or microfiche $105 \times$ $148 \mathrm{~mm}, 24 \times$ reduction, negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 1155 16th St., N.W., Washington, D. C. 20036. Remit check or money order for $\$ 3.00$ for photocopy or $\$ 2.00$ for microfiche, referring to code number JACS-74-6593.
(36) L. Pauling, "The Nature of the Chemical Bond," Cornell University Press, Ithaca, N. Y., 1960.

Reactions of Dimethyl Acetylenedicarboxylate and Related Acetylenes with Methylplatinum(II) Complexes

T. G. Appleton, M. H. Chisholm, H. C. Clark,* and K. Yasufuku
Contribution from the Department of Chemistry, University of Western Ontario, London N6A 3K7, Ontario, Canada. Received January 18, 1974

Abstract

The reaction of trans- $\mathrm{PtXCH}_{3} \mathrm{Q}_{2}\left(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I} ; \mathrm{Q}=\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ with $\mathrm{RC} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}$ affords trans- $\mathrm{PtXQ}_{2}\left[\mathrm{C}\left(\mathrm{COOCH}_{3}\right)=\mathrm{C}(\mathrm{Cl}) \mathrm{R}\right]$ in the presence of a radical initiator $\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{CH}_{3}\right.$) or by addition of HCl ($\left.\mathrm{R}=\mathrm{CO}_{2} \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{CH}_{3}, \mathrm{H}\right)$. trans- $\mathrm{PtXQ}_{2}\left[\mathrm{C}\left(\mathrm{COOCH}_{3}\right)=\mathrm{C}\left(\mathrm{COOCH}_{3}\right) \mathrm{CH}_{3}\right]$ is obtained from the reaction of trans- $\left[\mathrm{PtCH}_{3}\right.$ (acetone) $\left.\mathrm{Q}_{\text {. }}\right]+\mathrm{PF}_{6}{ }^{-}$with the acetylene $\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{CH}_{3}\right.$) followed by treatment with LiX. Based on the formation of these products and other observations, a mechanism for the formation of the β-chlorovinylplatinum compound in CHCl_{3} is proposed. This involves initial formation of the $1: 1$ complex with acetylene, followed by nucleophilic attack on the acetylene by HCl which is generated via a radical process.

Very recently, the possibility of a radical reaction of $\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CC} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}$ (dma) with the methylplatinum bond of trans- $\mathrm{PtCH}_{3} \mathrm{XQ}_{2}\left(\mathrm{Q}=\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, I (Ia has $X=C$), was reported. ${ }^{1}$ Such an insertion reaction of an organometallic compound by a free radical process is very interesting and apparently consistent with other more recent reports ${ }^{2}$ of radical behavior by organoplatinum complexes. We have now examined this and related reactions in detail.

The product previously identified ${ }^{1}$ incorrectly as the insertion product, trans $-\mathrm{PtXQ}_{2}\left[\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{CO}_{2}-\right.\right.$ $\left.\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$] (III) (IIIa has $\mathrm{X}=\mathrm{Cl}$), is now shown to be the β-chlorovinylplatinum compound, trans- $\mathrm{PtXQ}_{2^{-}}$ $\left[\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}(\mathrm{Cl}) \mathrm{CO}_{2} \mathrm{CH}_{3}\right]$ (IV) (IVa has $\mathrm{X}=\mathrm{Cl}$). The radical aspects of the reaction can be attributed to the radically induced formation of HCl which then participates in the formation of IV. We have also studied further the importance of the $1: 1$ adducts formed from some acetylenes and I.

[^0]
Results and Discussion

Preparation and Identification of III and IV. In chloroform solution, Ia and dma form the $1: 1$ adduct IIa which undergoes further reaction to give a product containing the α, β-dicarbomethoxyvinyl group, IVa, as well as trans $-\mathrm{PtCl}_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Q}_{2}(\mathrm{~V})$, cis $-\mathrm{PtCl}_{2} \mathrm{Q}_{2}$ (VI), and small amounts of dma oligomers. The oligomers and free dma were removed by washing with $\mathrm{H}_{2} \mathrm{O}$, VI was removed by chromatography, and IVa was isolated from V by fractional crystallization. The overall reaction is therefore described by eq 1 and 2 a .

$$
\begin{align*}
& \text { trans- } \mathrm{PtCH}_{3} \mathrm{ClQ}_{2}+\mathrm{dma} \rightleftharpoons \text { trans }-\mathrm{PtCH}_{3} \mathrm{ClQ}_{2} \cdot \mathrm{dma} \tag{1}\\
& \text { Ia } \\
& \text { II } \\
& \begin{array}{c}
\mathrm{IIa} \xrightarrow[{\substack{\text { (b) }+\mathrm{HCl}\left(\text { eq } 2 \text { b) } \\
\text { trans }-\mathrm{PtClQ}_{2}\left[\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}(\mathrm{Cl}) \mathrm{CO}_{2} \mathrm{CH}_{3}\right]+\mathrm{V}+\mathrm{VI} \\
\right. \text { IVa }}}]{\text { (V) initiator (eq 2a) }}
\end{array} \tag{2}
\end{align*}
$$

The ${ }^{1} \mathrm{H} n \mathrm{~nm}$ spectrum (in CDCl_{3}) of IVa shows the $-\mathrm{CO}_{2} \mathrm{CH}_{3}$ signals at $\delta 3.66$ and 3.48 as two singlets, the upfield signal having satellites due to coupling with ${ }^{19} \mathrm{Pt}\left(J_{\mathrm{Pt}}=3.0 \mathrm{~Hz}\right)$. The phosphine-methyl signals at $\delta 1.83$ and 1.76 appear as two overlapped triplets $\left({ }^{2+4} J_{\mathrm{PH}}=7.8\right.$ and 8.0 Hz$)$ with ${ }^{19} \mathrm{j} \mathrm{Pt}$ satellites $\left(J_{\mathrm{PtH}}=\right.$ 27.6 and 30.8 Hz , respectively) showing that the phos-
phorus nuclei are trans to each other. The ir spectrum shows the $\nu_{\mathrm{C}=0}$ and $\nu_{\mathrm{C}-\mathrm{O}-\mathrm{C}}$ absorptions for the ester groups at 1700 (s) and $1220 \mathrm{~cm}^{-1}$ (s), $\nu_{\mathrm{C}=\mathrm{c}}$ at $1555 \mathrm{~cm}^{-1}$ (vw broad), as well as the characteristic absorptions of Q. The mass spectrum shows the molecular ion [M] ${ }^{+}$ at $m / e 684$ (calcd $m / e=684$) with the characteristic isotopic pattern expected for $-\mathrm{PtCl}_{2}$, followed by ions corresponding to fragments $[\mathrm{M}-\mathrm{Cl}]^{+},\left[\mathrm{M}-\mathrm{PPh} \mathrm{Me}_{2}\right]^{+}$, [$\left.\mathrm{M}-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}(\mathrm{Cl}) \mathrm{CO}_{2} \mathrm{CH}_{3}\right]^{+}$, and $[\mathrm{M}-\mathrm{ClC}$ $\left.\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}(\mathrm{Cl}) \mathrm{CO}_{2} \mathrm{CH}_{3}\right]^{+}$. These data indicate that IVa is the β-chloro- α, β-dicarbomethoxyvinylchloroplatinum complex and not the analogous β-methyl compound, IIIa.

The latter compound, III, has, however, been prepared by the reaction of dma with the methylplatinum cation, ${ }^{3}$ according to eq 3 .

$$
\begin{array}{r}
\text { trans- }\left[\mathrm{PtCH}_{3} \mathrm{Q}_{2} \text { (acetone) }\right]^{+} \mathrm{PF}_{6}-+\mathrm{dma} \xrightarrow[\substack{\text { in } \mathrm{CH} \\
\text { or } \mathrm{CHCl} \\
2}]{\mathrm{LiiX}} \\
\text { trans- } \mathrm{PtXQ}_{2} \mathrm{C}\left[\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right] \tag{3}\\
\text { IIIa, X }=\mathrm{Cl} \\
\mathrm{~h} X=\mathrm{I}
\end{array}
$$

The nmr spectrum of IIIa shows the vinyl CH_{3} signal at $\delta 2.01$; since it overlaps part of the $\mathrm{P}-\mathrm{CH}_{3}$ signal, any coupling to ${ }^{31} \mathrm{P}$ or ${ }^{195} \mathrm{Pt}$ is obscured. In other respects, the nmr and ir spectra are in full accord with those expected for structure IIIa. The mass spectrum shows $[\mathrm{M}]^{+}$at $m / e 664$ (calcd m / e for IIIa $=664$) with the isotopic pattern expected for -PtCl followed by fragments corresponding to ions $[\mathrm{M}-\mathrm{Cl}]^{+},\left[\mathrm{M}-\mathrm{C}\left(\mathrm{CO}_{2^{-}}\right.\right.$ $\left.\left.\mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right]^{+}$, and $\left[\mathrm{M}-\mathrm{ClC}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=\right.$ $\left.\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right]^{+}$.

The vinylic double bond of III might be expected to have the cis stereochemistry, since the insertion products of $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}$ into the $\mathrm{CH}_{3}-\mathrm{Pt}$ bond of neutral methylplatinum complexes ${ }^{4}$ or their cations ${ }^{3}$ have all shown the cis $-\mathrm{PtC}=\mathrm{CCH}_{3}$ structure. On the other hand, attempts to cleave the Pt -vinyl bond as a means of determining the stereochemistry at the $\mathrm{PtC}=\mathrm{CCl}$ double bond of IVa failed; the compound is very stable in both acidic and alkaline conditions. However, the stereochemistry is apparently trans based on the nmr spectra of related β-chlorovinylplatinum compounds obtained as follows.

The addition of HCl gas to the CHCl_{3} solution of IIa immediately gave IVa in very good yield (reaction 2 b). On the other hand, the immediate addition of HCl into a freshly prepared solution of I and dma afforded only a mixture of trans $-\mathrm{PtCl}_{2} \mathrm{Q}_{2}$ and free dma with a very small amount of IVa; under these conditions the equilibrium concentration of IIa is apparently only slowly attained. However, IVa was obtained in fairly good yield from HCl addition to a solution of I and dma which had stood for 1 day.

From the similar reaction (4) of $\mathrm{RC} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}$ with trans $-\mathrm{PtCl}_{2} \mathrm{Q}_{2}, \beta$-chlorovinylplatinum compounds IVd,
(3) M. H. Chisholm and H. C. Clark, J. Amer. Chem. Soc., 94, 1532 (1972).
(4) H. C. Clark and R. J. Puddephatt, Inorg. Chem., 9, 2670 (1970).
e, and f were prepared, which could not be obtained by reaction 2 , since $1: 1$ adducts with Ia could not be isolated for these acetylenes. The physical properties and analyses of the products and the spectroscopic data are shown in Tables I and II.

Another product of reaction 4 is cis $-\mathrm{PtCl}_{2} \mathrm{Q}_{2}$ (VI), which, under the same conditions, is unreactive toward these acetylenes. Yields of IV in reaction 4 decrease in the order of the electron-withdrawing ability of R $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}>\mathrm{C}_{6} \mathrm{H}_{5}>\mathrm{H}>\mathrm{CH}_{3}\right)$, suggesting that coordination of the acetylenes to platinum is required for the formation of IV in eq 4 as well as in eq 1 , although 1:1 adduct formation has not been detected for the acetylenes of reaction 4. Indeed, $\mathrm{PhC} \equiv \mathrm{CCH}_{3}$ did not give any chlorovinyl product but only VI.

In methanolic solution also, Ia and dma forms IIa; however, further reaction involving nucleophilic attack of -OMe on coordinated dma occurs, ${ }^{5}$ giving the β methoxyvinylplatinum compound VIIa.

$$
\begin{gather*}
\text { trans }-\mathrm{PtClCH}_{3} \mathrm{Q}_{2}+\mathrm{RC} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3} \xrightarrow[\text { in } \mathrm{CH}_{3} \mathrm{OH}]{ } \\
\text { trans }-\mathrm{PtClQ}_{2}\left[\mathrm{CC}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{OCH}_{3}\right) \mathrm{R}\right] \tag{5}\\
\text { VIIa, } \mathrm{R}=\mathrm{CO}_{2} \mathrm{CH}_{3} \\
\mathrm{~b}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}
\end{gather*}
$$

$\mathrm{PhC} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}$, for which 1:1 adduct formation has not been detected, likewise gave VIIb, but $\mathrm{CH}_{3} \mathrm{C} \equiv$ $\mathrm{CCO}_{2} \mathrm{CH}_{3}$ did not give the analogous product.

Nmr Spectra. In all of the products, one resonance attributable to $\mathrm{CO}_{2} \mathrm{CH}_{3}$ showed coupling with ${ }^{195} \mathrm{Pt}$ ($J_{\text {PtH }} \sim 3.0 \mathrm{~Hz}$), while in IIIa, b, IVa, b, c, and VIIa another resonance (which is not coupled) also assignable to $\mathrm{CO}_{2} \mathrm{CH}_{3}$ appears at lower field. The former resonance (coupled to ${ }^{195} \mathrm{Pt}$) can be assigned to the $\alpha-\mathrm{CO}_{2}$ CH_{3} group; it is analogous to the peak for the $\alpha-\mathrm{CF}_{3}$ group vicinal to platinum ${ }^{6}$ in the ${ }^{19} \mathrm{~F}$ spectra of the related trifluoromethylvinyl platinum complexes. The formation of α-carbomethoxyvinyl compounds from the asymmetric acetylenes, i.e., attachment of the vinylic carbon with the more electron withdrawing group to platinum, is consistent with the formation of trans$\mathrm{PtClQ}_{2}\left[\mathrm{C}\left(\mathrm{CF}_{3}\right)=\mathrm{C}(\mathrm{X}) \mathrm{H}\right]\left(\mathrm{X}=\mathrm{OCH}_{3} \text { or } \mathrm{Cl}\right)^{7}$ from Ia with $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CH} . \quad J_{\mathrm{PtH}}=61.2$ and $J_{\mathrm{PH}}=4.0 \mathrm{~Hz}$ for the β-vinylic proton in IVf indicate that the hydrogen is cis with respect to the Pt moiety, on the basis of reported values for a number of vinylplatinum complexes. ${ }^{7.8}$ The stereochemistry of IVa-e and IVg is presumably then the same as in IVf with a trans $-\mathrm{PtC}=\mathrm{CCl}$ arrangement.

The vinylic CH_{3} protons in IVe and in IIIa and b show very similar values for $J_{\mathrm{PtH}} \sim 2.8 \mathrm{~Hz}$, again consistent with a cis arrangement of the $\mathrm{PtC}=\mathrm{CCH}_{3}$ group for III.

The phosphine methyl regions of the proton spectra of IVa-e, IIIa and b, and VIIa and b show two over-

[^1]Table I

Compound	Mp, ${ }^{\circ} \mathrm{C}$		- C-Analysis, \% calcd (\% found)-_ Halogen				Mol wt m / e^{a}
trans $\left.-\mathrm{PtCl}\left\{\mathrm{C}\left(\mathrm{COOCH}_{3}\right)=\mathrm{C}\left(\mathrm{COOCH}_{3}\right) \mathrm{CH}\right)\right\} \mathrm{Q}_{2}$	IIII	153-155	41.61 (41.23)	4.71 (4.65)	Cl	5.33 (5.51)	664
trans $-\mathrm{PtI}\left\{\mathrm{C}\left(\mathrm{COOCH}_{3}\right)=\mathrm{C}\left(\mathrm{COOCH}_{3}\right) \mathrm{CH}_{3}\right\} \mathrm{Q}_{2}$	IIIb	171-172	36.57 (36.34)	4.14 (4.14)		16.80 (16.58)	
trans $-\mathrm{PtCl}\left\{\mathrm{C}\left(\mathrm{COOCH}_{3}\right)=\mathrm{C}(\mathrm{Cl}) \mathrm{COOCH}_{3}\right\} \mathrm{Q}_{2}$	IVa	124-125	38.60 (38.59)	4.12 (4.22)	Cl	10.36 (10.47)	684
trans $-\mathrm{PtBr}\left\{\mathrm{C}\left(\mathrm{COOCH}_{3}\right)=\mathrm{C}(\mathrm{Cl}) \mathrm{COOCH}_{3}\right\} \mathrm{Q}_{2}$	IVb	141-143	36.25 (36.23)	3.87 (3.92)	Cl	4.86 (4.76)	728
						10.96 (10.85)	
trans $-\mathrm{Ptl}\left\{\mathrm{C}\left(\mathrm{COOCH}_{3}\right)=\mathrm{C}(\mathrm{Cl}) \mathrm{COOCH}_{3}\right\} \mathrm{Q}_{2}$	IVc	147-148	34.06 (34.22)	3.64 (3.55)	Cl	$\begin{gathered} 4.57(4.78) \\ 16.36(16.23) \end{gathered}$	
trans $-\mathrm{PtCl}\left\{\mathrm{C}\left(\mathrm{COOCH}_{3}\right)=\mathrm{C}(\mathrm{Cl}) \mathrm{C}_{6} \mathrm{H}_{3}\right\} \mathrm{Q}_{2}$	IVd	169-171	44.46 (44.52)	4.30 (4.36)			
trans $-\mathrm{PtCl}\left\{\mathrm{C}\left(\mathrm{COOCH}_{3}\right)=\mathrm{C}(\mathrm{Cl}) \mathrm{CH}_{3}\right\} \mathrm{Q}_{2}$	IVe	133-135	39.39 (39.28)	4.41 (4.45)			640
trans $-\mathrm{PtCl}\left\{\mathrm{C}\left(\mathrm{COOCH}_{3}\right)=\mathrm{C}(\mathrm{Cl}) \mathrm{H}\right\} \mathrm{Q}_{2}$	IVf	119-121	38.35 (38.74)	4.18 (4.27)			626
trans $-\mathrm{PtCl}\left\{\mathrm{C}\left(\mathrm{COOCH}_{3}\right)=\mathrm{C}(\mathrm{Cl}) \mathrm{COOCH}_{3}\right\}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2}$	IVg	160-161	47.54 (47.52)	3.99 (4.06)			
trans $-\mathrm{PtCl}\left\{\mathrm{C}\left(\mathrm{COOCH}_{3}\right)=\mathrm{C}\left(\mathrm{OCH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}\right\} \mathrm{Q}_{2}$	VIIIb	173-174	46.46 (46.26)	4.77 (4.58)	Cl	5.08 (5.26)	698
trans $-\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{Q}_{2}\left(\mathrm{CH}_{3} \mathrm{Q}_{2} \mathrm{CC} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}\right)$	VIII	72-80	46.33 (47.30)	4.58 (5.18)	Cl	4.88 (4.70)	

${ }^{a}$ Peak for ${ }^{635} \mathrm{Cl}^{37} \mathrm{Cl}{ }^{194} \mathrm{Pt}+{ }^{37} \mathrm{Cl}^{35} \mathrm{Cl}^{196} \mathrm{Pt} "$ or ${ }^{"}{ }^{35} \mathrm{Cl}^{194} \mathrm{Pt}^{37} \mathrm{Cl}^{196} \mathrm{Pt}$."
lapping triplets (with ${ }^{195} \mathrm{Pt}$ satellites), corresponding to nonequivalent phosphine methyl groups. Similar nonequivalence of the phosphine methyl groups has also been observed in trans- $\mathrm{PtXQ}_{2}\left[\mathrm{C}\left(\mathrm{CF}_{3}\right)=\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{CH}_{3}\right]^{4}$ and in trans- $\mathrm{PtIQ}_{2}\left[\mathrm{C}\left(\mathrm{CF}_{3}\right)=\mathrm{C}\left(\mathrm{OCH}_{3}\right) \mathrm{H}\right] .{ }^{9}$ Such nonequivalence may arise from a conformation of the vinylic groups perpendicular to the plane of the complex, with a rotation about the $\mathrm{Pt}-\mathrm{C}$ bond which is slow on the nmr time scale. IVf and trans- $\mathrm{PtClQ}_{2}\left[\mathrm{C}\left(\mathrm{CF}_{3}\right)=\right.$ $\left.\mathrm{C}\left(\mathrm{OCH}_{3}\right) \mathrm{H}\right]$ both of which have the sterically small hydrogen as the cis substituent do not show this nonequivalence.

Mechanism of Reaction 2a. The product from reaction 2 a has thus been characterized as IVa, while IIIa cannot be converted, under the same conditions as eq 2a, into IVa. Nevertheless, reaction $2 a$ shows the characteristics of a radical reaction.

It is very dependent on the particular sample of Ia. For some samples, reaction proceeded as above, while for others only the $1: 1$ adduct, IIa, was formed; there was no formation of IVa and only disproportionation to V and VI occurred over several weeks. Furthermore, addition of an "unreactive" solution or an inhibitor (DPPH, galvinoxyl) to a "reactive" solution immediately inhibited both the formation of IVa and disproportionation. On the other hand, both reactions occurred on the addition of a small amount of a freeradical initiator (benzoyl peroxide (BPO) or azobisisobutyronitrile) to an "unreactive" solution or on uv irradiation.

For the formation of IVa, the initiator must be added only after the equilibrium concentration of IIa has been attained. If the initiator is added sooner, the methyl transfer reaction giving V and VI is predominant. This latter reaction also takes place in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, but at a much reduced rate and does not occur in nonchlorinated solvents even though the $1: 1$ adduct is formed.

From the similar reaction of trans $-\mathrm{PtCH}_{3} \mathrm{IQ}_{2}$, Ic, with dma in CHCl_{3}, the β-chlorovinyliodoplatinum complex IVc (and not either the β-iodovinylchloro or the β iodovinyliodo compound) was obtained; IVc was also prepared from the reaction of IVa with LiI in acetone. The formation of lVc from Ic and the obviously important role of chloroform as solvent in eq 2 a , indicate that one of the two chlorines in IVa comes
(9) T. G. Appleton, H. C. Clark, and R. J. Puddephatt, Inorg. Chem., 11, 2074 (1972).
from the solvent, although the direct transfer of chlorine from CHCl_{3} to the vinylic position might seem unlikely energetically.

On the other hand, it is well known that hydrogen chloride is one of the products of the decomposition of chloroform in either the presence ${ }^{10}$ or absence ${ }^{11}$ of air. It is thus probable that HCl is generated in eq 2a via a radical process and this is further confirmed by observations of the behavior of trans $-\mathrm{PtClQ}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$. This compound reacts with HCl immediately giving methanol and cis $-\mathrm{PtCl}_{2} \mathrm{Q}_{2}$ (probably via trans $-\left[\mathrm{PtClQ}{ }_{2} \mathrm{CO}\right]^{+} \mathrm{Cl}^{-}$ followed by CO liberation). The nmr spectrum of CHCl_{3} solutions of trans- $\mathrm{PtClQ}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$ showed the rapid generation of $\mathrm{CH}_{3} \mathrm{OH}$ either in the presence of air or on exposure to light in the absence of air, but not in the absence of air or light; also, the formation of $\mathrm{CH}_{3} \mathrm{OH}$ was found to be much slower when dma was added. Initiation and inhibition effects then clearly arise from reaction with chloroform. We thus conclude that eq 2 a is a reaction of the $1: 1$ adduct IIa with radically generated HCl accompanying the methyl transfer reaction.

The attack of HCl on the $1: 1$ adduct cannot be interpreted as a simple nucleophilic attack of Cl^{-}on the coordinated acetylene as has been suggested ${ }^{3.7}$ for the corresponding attack by methoxide (see reaction 5), since the reaction product of IIa with HBr or HI was not the expected β-bromovinyl- or β-iodovinylchloroplatinum compound but rather the β-chlorovinyl-bromo- (IVb) or -iodoplatinum derivative (IVc).

A plausible explanation for the formation of IVc from both trans $-\mathrm{PtICH}_{3} \cdot \mathrm{dma}$ with HCl and trans$\mathrm{PtClCH}_{3} \mathrm{Q}_{2} \cdot \mathrm{dma}$ with HI is given in Scheme I.

Reaction of IIa with HX may cause the elimination of CH_{4} followed by the rapid formation of IVc via a
(10) S. Kawai, Yakugaku Zasshi, 86, 1125 (1968).
(11) A. E. Shilov and R. D. Sabirova, Zh. Fiz. Khim., 34, 860 (1960).

Table II. Spectroscopic Data

6604
Scheme I

cationic acetylene species. The formation of transPtClXQ_{2} by dissociation of its acetylene complex would also be expected for this reaction sequence. Note that reaction 4 may also proceed via the formation in a preequilibrium step of an acetylene complex of trans$\mathrm{PtCl}_{2} \mathrm{Q}_{2}$. Thus the nucleophilic attack of Cl^{-}to the coordinated acetylenes affords the β-chlorovinylplatinum compounds, while the reaction of HX with $\mathrm{Pt}(0)$-acetylene complexes affords β-hydrogenvinylplatinum compounds ${ }^{8.12,13}$ and the reaction of HCl with Pt -acetylide complexes affords α-chlorovinylplatinum compounds. ${ }^{14}$

Methyl Transfer Reaction. The dma acts as a retardant in eq 2 a , while it is also necessary to initiate the methyl transfer reaction of Ia in CHCl_{3} (see Table IIi).

Table III. Reaction of trans- $\mathrm{PtClCH}_{3} \mathrm{Q}_{2}$ with Acetylenes in CHCl_{3}

Acetylene	Reaction ${ }^{\text {a }}$
$\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}$	$\mathrm{PtQ}_{2}\left(\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}\right)+\mathrm{Pt}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Q}_{2} \mathrm{Cl}_{2}$
$\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CC} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}{ }^{\text {b }}$	$\mathrm{PtCl}_{2} \mathrm{Q}_{2}+\mathrm{PtCl}_{2} \mathrm{Me}_{2} \mathrm{Q}_{2}+\mathrm{CH}_{4}+$ (methyl transfer) trans $-\mathrm{PtClQ}_{2}\left\{\mathrm{C}\left(\mathrm{COOCH}_{3}\right)=\mathrm{C}\right.$ (Cl) $\left.\mathrm{COOCH}_{3}\right\}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}$	Disproportionation
$\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}$	Disproportionation
$\mathrm{HOCH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}$	Disproportionation
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{5}$	Slow disproportionation
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}_{3}$	No reaction
$\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3}$	No reaction
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}=\mathrm{CH}$	$\begin{aligned} & \mathrm{PtCl}_{2} \mathrm{Q}_{2}+\mathrm{PtCl}_{2} \mathrm{Me}_{2} \mathrm{Q}+\mathrm{CH}_{4}+\text { trans }- \\ & \mathrm{PtCl}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{3}\right) \mathrm{Q}_{2} \end{aligned}$
$\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	$\begin{aligned} & \mathrm{PtCl}_{2} \mathrm{Q}_{2}+\mathrm{PtCl}_{2} \mathrm{Me}_{2} \mathrm{Q}_{2}+\mathrm{CH}_{4}+\text { trans }- \\ & \mathrm{PtCl}\left(\mathrm{C} \equiv \mathrm{CCCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{Q}_{2} \end{aligned}$

[^2]The CHCl_{3} solution of Ia is very stable and its ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum does not show any change even in the presence of air. Addition of acetylenes having electron-withdrawing substituents causes methyl transfer, which is inhibited by addition of an inhibitor. The effect of the substituents suggests that an interaction between an acetylene and Ia also may be involved in initiating the methyl transfer. In the limiting case, this methyl transfer reaction is equivalent to disproportionation. Thus, disproportionation giving V and cis- $\mathrm{PtQ}_{2}\left(\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}\right)$ has been observed ${ }^{6}$ at room temperature in the reaction

[^3]of Ia with $\mathrm{CF}_{3} \equiv \mathrm{CCF}_{3}$. Uv irradiation of the CHCl_{3} solution of Ia and $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}$ caused only disproportionation while irradiation of the $\mathrm{C}_{6} \mathrm{H}_{6}$ solution gave only the insertion products. The methyl transfer reaction may thus well be of a radical nature.

Significance of π-Complex Formation. Formation of the $1: 1$ adduct IIa is rather slow, equilibrium being attained after several hours. The equilibrium constant in CHCl_{3} is $5.2 \mathrm{~mol}^{-1} \mathrm{l} .\left(30^{\circ}\right)$, the value decreasing in polar solvents in the order of their dielectric constant $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}>\mathrm{CH}_{3} \mathrm{COCH}_{3}>\mathrm{CH}_{2} \mathrm{Cl}_{2}>\mathrm{CHCl}_{3}\right)$; in benzene no $1: 1$ adduct formation was observed. The conductivity measurement in nitrobenzene apparently shows IIa is a nonelectrolyte under these conditions. Although solid IIa could not be isolated from such a solution, the analogous $1: 1 \mathrm{dma}$ adduct (VIII) of trans $-\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Q}_{2}$ has been isolated as a crystalline solid containing a small amount of trans $-\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Q}_{2}$. The nmr spectra of VIII and Ha each showed two different $\mathrm{CO}_{2} \mathrm{CH}_{3}$ signals, one of which had ${ }^{195} \mathrm{Pt}$ satellites, $J_{\mathrm{PtH}}=1.5 \mathrm{~Hz}$, two overlapping triplets in the $\mathrm{P}-\mathrm{CH}_{3}$ region, and $\mathrm{Pt}-\mathrm{CH}_{3}$ in Ila a triplet with ${ }^{195} \mathrm{Pt}$ satellites, $J_{\mathrm{PtH}}=57.0 \mathrm{~Hz}$, which is close to the values expected for platinum(IV) complexes, and thus indicate the stereochemistry II.

As previously reported, $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}, \mathrm{C}_{2} \mathrm{~F}_{4},{ }^{6}$ and $\mathrm{C}_{2}(\mathrm{CN})_{4}{ }^{15}$ form $1: 1$ adducts of stereochemistry IX with trans $-\mathrm{PtCl}\left(\mathrm{CH}_{3}\right) \mathrm{L}_{2}$, and this has also been established ${ }^{16}$ for $\mathrm{PtClMe}\left(\mathrm{AsMe}_{3}\right)_{2} \cdot\left(\mathrm{C}_{4} \mathrm{~F}_{6}\right)$ by an X-ray crystallographic structure determination. The adduct from tetrachloro-o-quinone and Ja also has this stereochemistry. It is not clear why stereochemistry II should be preferred for the dma adduct, although obviously relative trans influences, and steric and solvation effects may all be important.

Experimental Section

Infrared spectra, proton nmr, and mass spectra were recorded on a Perkin-Elmer 621 grating spectrophotometer (samples prepared as Nujol mulls), Varian T-60 and HA-100 spectrometers using CDCl_{3} as solvent, and a Varian M-66 mass spectrometer, respectively. Microanalyses were performed by Chemalytics, Inc., Tempe, Ariz., and Alfred Bernhardt, Mulheim, W. Germany.
Benzoyl peroxide, diphenylpicrylhydrazyl, galvinoxyl, and $\mathrm{CH}_{3^{-}}$ $\mathrm{O}_{2} \mathrm{CC} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}$ were obtained from Aldrich Chemical Co., Inc.; $\mathrm{PhC} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}$ and $\mathrm{HC} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}$ were prepared by the literature methods. ${ }^{17-19}$

Ia, trans $-\mathrm{PtClCH}_{3}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2}$, and trans- $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Q}_{2}$ were prepared as previously reported. ${ }^{20.21}$

Preparation of IVa (Reaction 2a). Ia $(0.194 \mathrm{~g})$ and dma (0.044 g) in 0.7 ml of chloroform were placed in an nmr tube. The gradual formation of IIa over several hours was observed from the nmr spectra. After $10 \mathrm{hr}, 0.08 \mathrm{~g}$ of BPO was added and the re-

[^4]action was followed by observing changes in the nmr spectrum. After the solution had stood for 4 days at room temperature, the solvent was evaporated under reduced pressure and the orange oily residue was dissolved in $c a .3 \mathrm{ml}$ of benzene. The solution was chromatographed through a Florisil column ($1 \times 5 \mathrm{~cm}$), which on elution with benzene followed by evaporation and addition of diethyl ether gave white needles, V. The mother liquid was again chromatographed with benzene and from the diethyl ether eluate 0.04 g of IVa was obtained as white crystals, mp 124-125 . From the fraction eluted with benzene-dichloromethane (1:1), VI was obtained.
Reaction $\mathbf{2 b}$. To the equilibrium solution (orange) of IIa formed from 0.102 g of Ia and dma (0.03 g) in 0.2 ml of chloroform, hydrogen chloride gas was passed for 1 min ; the solution immediately turned yellow with the evolution of a gas identified as methane. After standing for 1 hr , the mixture was diluted with 20 ml of dichloromethane, washed twice with water, and dried over anhydrous magnesium sulfate. Evaporation of the solvent and chromatography on Florisil with benzene followed by evaporation of the benzene and addition of diethyl ether gave IVa (0.09 g). Similarly, IVb and IVc were obtained using gaseous hydrogen bromide or aqueous hydrogen iodide.
Preparation of IVb and IVe from IVa. To an acetone (20 ml) solution of $\operatorname{Va}(0.1 \mathrm{~g})$, excess LiBr (or LiI) was added with stirring, and the solution was allowed to stand for 4 hr . After evaporation of the solvent, the residue was extracted with benzene and chromatographed on Florisil. Evaporation of the solvent and addition of diethyl ether gave IVb or IVc in good yield. Similar treatment of IVb obtained in reaction 2 b with LiBr also gave IVb.
Preparation of IIIa. To a solution of trans-[CH3 Pt (acetone)$\left.\mathrm{Q}_{2}\right]^{+} \mathrm{PF}_{6}{ }^{-}$in 40 ml of dichloromethane, from Ia (0.51 g) and 0.25 g of AgPF_{6} in acetone, 0.132 g of dma was added and stirred for 0.5 hr at room temperature. The solvent was evaporated and the yellow oily residue was dissolved in 20 ml of acetone and excess LiCl was added. After 3 hr of stirring, the solvent was evaporated and the residue was dissolved in 5 ml of benzene and washed with water. After being dried over magnesium sulfate, the solution was passed through a Florisil column and was reduced in volume. Addition of diethyl ether gave IIIa (0.17 g).

Preparation of VIIb. To a solution of Ia (0.153 g) in 10 ml of methanol at 40° under $\mathrm{N}_{2}, 0.05 \mathrm{~g}$ of $\mathrm{PhC} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}$ was added and the solution was stirred for 5 hr . After evaporation of the solvent to $c a .2 \mathrm{ml}$, addition of 5 ml of diethyl ether and of 2 ml of
pentane gave white crystals, which were recrystallized from dichloro-methane-diethyl ether to give VIIb (0.13 g).

Preparation of the $\mathrm{PtClCH}_{3} \mathrm{Q}_{2}$ - tetrachloro- σ-quinone Adduct. Ia (0.24 g) and tetrachloro- 0 -quinone $(0.126 \mathrm{~g})$ were mixed together in ca. 1 ml of chloroform. The solution immediately turned dark brown and after about 5 minutes dark brown crystals separated, which were orange-brown when dry (0.164 g) (dec pt $>230^{\circ}$). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{Cl}_{5} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pt}: \mathrm{C}, 36.0 ; \mathrm{H}, 3.3 ; \mathrm{Cl}$, 23.1. Found: C, 36.1; $\mathrm{H}, 3.0 ; \mathrm{Cl}, 23.5$.

The nmr spectrum (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) shows the phosphine methyl signals at $\delta 2.00$ as a doublet with ${ }^{195} \mathrm{Pt}$ satellites, $J_{\mathrm{PH}}=12.8 \mathrm{~Hz}$, $J_{\mathrm{PtH}}=20.0 \mathrm{~Hz}$, and the platinum methyl at $\delta 1.10$ as a triplet, $J_{\mathrm{PH}}=$ $4.0 \mathrm{~Hz}, J_{\mathrm{PtH}}=68.0 \mathrm{~Hz}$.
1:1 Adduct (II). The ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum of IIa was measured in CDCl_{3} solution containing a mixture of Ia and excess dma. A nitrobenzene solution ca. 0.04 M in IIa showed, after equilibrium had been established, a molar conductivity of $1.4 \times 10^{-2} \Omega^{-1} \mathrm{~cm}^{2}$ mol^{-1} at 23° (Ia showed a conductivity of $4.2 \times 10^{-3} \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ under the same conditions). The peak height ratio of the ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra of the mixture of trans- $\mathrm{PtXCH}_{3} \mathrm{Q}_{2}$ and dma showed that the formation of the 1:1 adduct decreased in the order ($\mathrm{Cl}>\mathrm{I} \gg$ $\mathrm{Br} \sim \mathrm{O}$) in chloroform. trans- $\mathrm{PtClCF}_{3} \mathrm{Q}_{2}$ did not form a $1: 1 \mathrm{ad}-$ duct with dma, while trans- $\mathrm{PtClC}_{6} \mathrm{H}_{\bar{i}} \mathrm{Q}_{2}$ showed only a very slow rate of formation of the $1: 1$ adduct.
1:1 Adduct between trans-PtClC $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Q}_{2}$ and dma, VIII. trans$\mathrm{PtClC}_{6} \mathrm{H}_{5} \mathrm{Q}_{2}(0.057 \mathrm{~g})$ and dma $(0.06 \mathrm{~g})$ in 0.5 ml of chloroform were placed in an nmr tube. After 4 days two peaks corresponding to VIII had begun to appear in the nmr spectrum. After 3 weeks the solvent was evaporated and the residue was chromatographed on a Florisil column ($0.4 \times 1.0 \mathrm{~cm}$) using dichloromethane as an eluent. After concentration of the eluted solution, addition of diethyl ether gave pale yellow crystals (0.032 g), which, from the ${ }^{1} \mathrm{H}$ nmr spectrum, were contaminated with small amounts of trans$\mathrm{PtClC}_{6} \mathrm{H}: \mathrm{Q}_{2}$. Purification was not possible since chromatography without excess dma caused decomposition to give trans- $\mathrm{PtClC}_{6}{ }^{-}$ $\mathrm{H}_{5} \mathrm{Q}_{2}$ in yields greater than 65%; the mass spectrum of the impure adduct showed the same fragmentation pattern as pure trans-Pt$\mathrm{ClC}_{6} \mathrm{H}_{5} \mathrm{Q}_{2}$. Reaction of VIII with hydrogen chloride again afforded IVa with elimination of benzene.

Acknowledgment. We thank the National Research Council of Canada for the financial support of this work.

[^0]: (1) T. G. Appleton, M. H. Chisholm, and H. C. Clark, J. Amer. Chem. Soc., 94, 8912 (1972).
 (2) (a) D. J. Cardin, M. F. Lappert, and P. W. Lednor, J. Chem. Soc., Chem. Commun., 350 (1973); (b) D. Hopgood and R. A. Jenkins, J. Amer. Chem. Soc., 95, 4461 (1973); (c) N. G. Hargeaves, R. J. Puddephatt, L. H. Sutcliffe, and P. J. Thompson, J. Chem. Soc., Chem. Commun., 861 (1973).

[^1]: (5) M. H. Chisholm and H. C. Clark, Inorg. Chem., 10, 2557 (1971).
 (6) H. C. Clark and R. J. Puddephatt, Inorg. Chem., 10, 18 (1971).
 (7) T. G. Appleton, M. H. Chisholm, H. C. Clark, and L. E. Manzer, Inorg. Chem., 11, 1786 (1972).
 (8) B. E. Mann, B. L. Shaw, and N. I. Tucker, J. Chem. Soc. A, 2667 (1971).

[^2]: ${ }^{\text {a }}$ Followed by the nmr spectra at room temperature without deaeration, in the absence of an initiator. ${ }^{b}$ For this acetylene, formation of the π-complex was observed.

[^3]: (12) P. B. Tripathy, B. N. Renae, K. Adzamli, and D. M. Roundhill, J. Amer. Chem. Soc., 93, 4406 (1971).
 (13) R. D. W. Kemmitt, B. Y. Kimura, and G. W. Littlecott, J. Chem. Soc., Dalton Trans., 636 (1973).
 (14) M. H. Chisholm and D. A. Couch, The 6th International Conference on Organometallic Chemistry, Amherst, Mass., Aug 1973.

[^4]: (15) H. C. Clark and R. J. Puddephatt, Inorg. Chem., 10, 416 (1971).
 (16) B. R. Davies, N. C. Payne, and R. J. Puddephatt, Can. J. Chem., 50, 2276 (1972).
 (17) M. Reimer, Can. J. Chem., 64, 2510 (1942).
 (18) F. Feist, Justis Liebigs Ann. Chem., 345, 100 (1906).
 (19) V. Wolf, Chem. Ber., 86, 735 (1953).
 (20) T. G. Appleton, H. C. Clark, and L. E. Manzer, in press.
 (21) H. C. Clark and R. J. Puddephatt, Morg. Chem., 9, 2556 (1970).

